APO在一个页面整合关联可观测性数据的设计思路
可观测性能力是系统在运行过程中,通过收集、关联和分析不同类型的数据,来理解和解释系统行为的能力。其目标不仅是发现问题,还要提供足够的信息来分析和解决这些问题,甚至在问题发生之前预见潜在的风险。
划重点:关联分析不同类型的数据,帮助用户理解和解释系统行为的能力是可观测性系统建设的关键目标。
可观测性数据不是简单将Trace、Metric、log,三者数据做在一个产品里面,三者仍然是割裂的数据。OpenTelemetry的出现给三者内在有机关联带来了更多可能性,如何关联这些数据并且呈现仍然有许多挑战。本文探讨APO团队对如何关联可观测性的设计思路,目标是能够在一个页面关联微服务接口所有故障排查需要的相关数据,完成故障的定界定位。
思路一:简单关联独立展示(帮助用户减少了登录次数)
最容易想到的关联方式,就是将三者数据分为三个Tab显示,每个tab只负责展示自身的数据,数据之间仍然缺少关联和提示。
如果用户要做关联查询经常要完成这样的操作:
- 在Trace 页中筛选出Trace信息,确认该Trace可能有问题,然后拷贝该TraceID,相关的IP信息,servicename,podname等相关信息也拷贝出来用来查询指标(有时还需要打命令才能查询出pod所对应的node在哪,在 虚拟机里面可能还需要在cmdb根据IP查出node的唯一标识)
- 在Log页中,如果log已经输出了TraceID,可以通过TraceID搜索到相关的日志,如果日志未输出TraceID,就比较难以查询到日志
- 在Metric页面,根据servciename、podname、ip信息、node唯一标识完成指标的查询
思路二:简单关联但是数据串联(帮助用户减少了拷贝TraceID的时间)
在简单关联中,很容易进一步想到,能不能在展示Trace的时候,通过TraceID直接查看日志,而不用去拷贝TraceID至log页中查询。目前很多工具已经做到了这一步的关联,但是很多工具也就停留在这一步,在这个思路上其实还可以进一步关联,也就是将"思路一"所有可能要人为操作的功能,提前帮助用户查询好,用户可以沿着各种链接跳转至不同的数据当中。
很多可观测性平台按照"思路二"完成数据的串联之后就结束了,但是用户在使用过程中会容易出现以下的问题:
缺少全局统计信息,从单个Trace出发,虽然能在不同ROOT SPAN中查看指标、日志等相关信息,但是由于没有统计信息,很容易一叶障目。为了让大家理解更深刻,举例说明即便没有任何故障,延时落在P50的Trace表现和延时落在P99的Trace表现相差很大。
由于没有统计信息导致、确定故障根因 节点困难。假设业务操作入口--"下单接口"出现了20%的错误率同比升高,下单接口正常时大概有1%的错误率,现在错误率升高了,仅仅分析出错的Trace可能并不能很好的分析出问题,因为很难确定者错误的Trace是新增错误,还是以往就有的错误。
怎么办?不能从局部去排查问题,而是应该以微服务接口(Service+URL)的方式去查看数据, 因为微服务接口有其黄金指标,可以很快判断微服务接口是否异常,如果异常,接下来需要做的是在关联各种可能需要查看的数据至该微服务接口详情页中,这样就可以有全局信息,快速判断该微服务接口是不是故障根因。
思路三:以微服务接口(Service+URL)为入口,更好统计信息更多的关联数据、减少以偏概全的风险
根据黄金指标的统计信息,可以很快判断哪些微服务接口是有问题的,比如同比延时高,同比错误率高。那接下来的问题就是点击微服务接口(Service+URL)详情之后,如何关联数据。
初步想法:可以将Trace页、Metric页、Log页作为独立tab集成至微服务接口的详情页中,接口层和应用层告警信息也能关联至详情页
这样在详情页中
Log页,可以提前过滤出该微服务接口的日志
Trace页,可以提前过滤出调用过该微服务接口的Trace
Metric页,由于微服务接口缺少实例等相关资源tag元数据,用户需要提前根据service,查出实例信息,然后查出Node信息,将实例和Node信息进行完整的展示
告警信息也可以关联进来,但是只能关联接口层和应用层面告警信息:比如Service实例应用级别的告警,比如延时、错误率、吞吐量、JVM告警等信息