标准化排障之路:内核行为可观测性应对标准化排障落地难题
在当今快速发展的互联网时代,企业对于IT系统的依赖程度越来越高,系统稳定性成为企业持续发展的关键因素。为了提高系统稳定性,企业纷纷寻求标准化排障的方法。然而,在实施标准化排障过程中,企业往往会遇到一些落地难题。本文将探讨如何应对这些难题,推动标准化排障的落地,并提出以实现内核行为可观测性的方式来应对标准化排障落地的难题。
标准化排障的意义
排障流程的标准化是指将故障处理的各个环节规范化、流程化,以确保在面对系统或服务故障时,团队能够快速、有效地采取行动。同时能够最大限度减少因人员经验和技术水平差异导致的故障差异化问题,使排障流程能够可评估、可管理、可执行、可解释,改变依赖团队个别专家的窘迫局面,快速对齐团队人员排障处置能力。更多关于排障标准化的讨论可以参见#标准化排障系列文章。
为什么标准化排障难以落地
标准化排障虽然具有重要意义,但在实际中却很难真正落地,企业中也更多的是以制定组织层级的故障响应联动机制为主,或者规范人员和资源的协调机制。对于具体故障定位和分析的方法难以做到标准化和规范化,具体深度分析解读可参见文章
究其原因主要有以下几个方面:
存在观测盲区和孤岛,缺少穿针引线能力
目前大部分可观测体系建设后,仍存在很多可观测盲区和数据孤岛,各个工具各自为战,缺少将这些工具和数据串联起来的能力。
依赖专家经验和能力
目前排障过程中更多依赖参与处置人员的经验和综合能力水平,使得个体或单一团队的处置经验无法短时间传递到其他个人或团队,排障模式无法复用。导致即使制定排障的标准化流程也难以实施。
使用可观测性数据和工具的能力不一
业务开发团队、运维团队、容器团队等对于可观测性工具和数据的熟悉程度不同,对于相同指标的理解也有差异,使得即使建设了可观测性体系也无法直接进一步做到标准化排障。同时对于一些指标的含义长时间不使用也会生疏,这也使得故障发生时需要查阅资料。
工作量大,难以规范统一
以 Trace 数据为例,对其进行人工分析工作量巨大,所以往往也无法直接制定以人工分析可观测性数据为基准的标准化排障流程。
可观测性建设成熟度有差异
各个企业在可观测性建设、团队技术能力、组织协调水平上都有巨大的差异,这导致业内一些企业的优秀方法论难以在其他企业内部得到落地推广。例如一些公司花费巨大的人力、物力成本进行可观测性数据的指标治理,对可观测性数据进行自动化分析,但这种方式对于团队技术能力、企业重视程度都有很高要求,往往不具有普适应。